Cross-silo Federated Learning for Brain Disease Classification

Presented by Md. Abdus Sahid

Faculty of Computer Science and Engineering Hajee Mohammad Danesh Science and Technology University Dinajpur, Bangladesh

Presentation Outlines

- 1. Introduction
- 2. Literature Review
- 3. Analysis Design
- 4. Results and Discussions
- 5. Conclusion & Future Work
- 6. References

Introduction

Human Brain

- Brain operates as the body's primary regulating center.
- About 86 billion neuron.

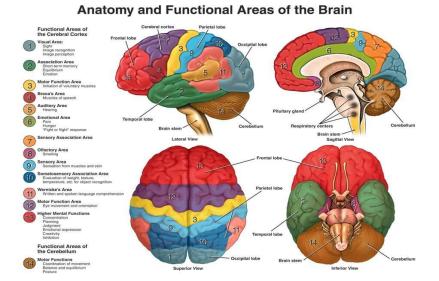


Figure-1.1: Functional areas of Brain

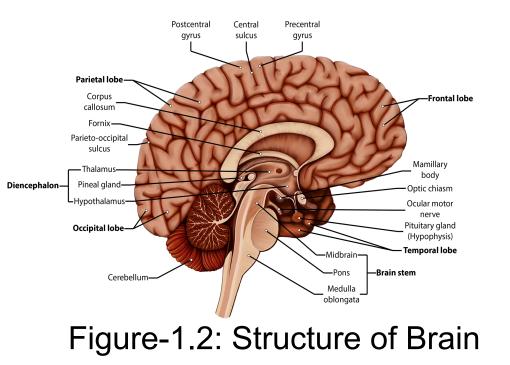
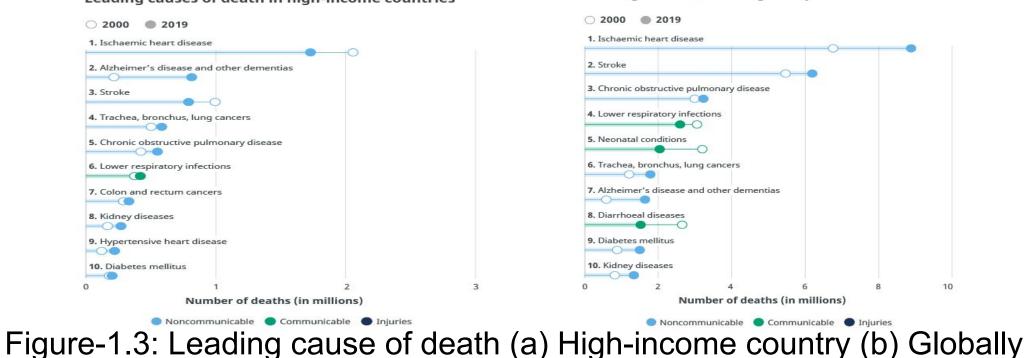


Image Courtesy: The Human Origin Project & Kind PNG.

Development Science and a scie

Introduction Cont'd

Top 10 Leading Causes of Death:



Leading causes of death in high-income countries

Image Courtesy: WHO Global Health Estimates.

Leading causes of death globally

Introduction Cont'd

Alzheimer's Disease

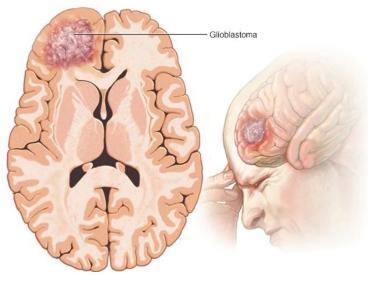
- Alzheimer's is caused by damage to nerve cells (neurons) in the brain.
- 55 million in 2019 is expected to rise to 139 million in 2050 globally.
- About 60-80% of all dementia are labeled as Alzheimer's [1, 2].
- According to Alzheimer's disease facts and figures 2023, In USA every 1 in 3 seniors die of Alzheimer's or another dementia.

Figure-1.5: Alzheimer's disease¹.

Introduction Cont'd

Brain Tumor

- Brain tumor is a caused by growth of abnormal cells in the brain.
- Example of source of cancerous or malignant tumor is olfactory neuroblastoma, chondrosarcoma and medulloblastoma.
- About 78% of cancerous primary brain tumors are gliomas¹.



```
Figure-1.6: Glioblastoma
Brain Tumor<sup>1</sup>
```


Literature Review

Review findings of for Alzheimer's disease classification

Туре	Data	Ref.	Model	Performance	Year
Federated	MRI	[3]	CNN	Acc = 0.86, pre = 0.81, rec = 0.81, and f1=0.81	2022
Federated	MRI	[4]	CNN	Acc = 0.92, rec = 1.0, spec = 0.91	2021
Centralized	EEG	[5]	SVM, LR, KNN, DT	Sen = 0.99, spec = 1.0, f1 = 0.98 using 10-fold CV	2022
Centralized	EEG	[6]	ELM, SVM, KNN	Acc = 0.99, pre = 1.0, rec = 0.98, and f1 = 0.99 using ELM.	2020
Centralized	EEG	[7]	SVM, LR	Acc = 0.88, rec = 0.85, spe = 95	2019
Centralized	MRI	[8]	CNN	Acc = 1.0 for fMRI, and acc = 0.99 for MRI.	2016
Centralized	MRI	[9]	SVM	Acc = 0.88, sen = 0.9, spe = 0.87, and AUC = .89	2016
Centralized	EEG	[10]	SVM	Acc = 0.84 for EO, 0.97 for CT, and 0.72 for EC.	2014
Centralized	EEG	[11]	SVM	Acc = 0.84, rec = 0.75, and spe = 0.94	2013

Literature Review Cont'd

Review Findings for Brain Tumor classification

Туре	Data	Ref.	Model	Performance	Year
Federated	MRI	[12]	CNN	Acc = 0.95, pre = 0.97, rec = 0.96, and f1=0.94	2022
Centralized	MRI	[13]	UNet, Markov M.	Acc train = 0.91, acc test = 0.92 using U-Net.	2020
Centralized	EEG	[14]	VGGNet, AlexNet, GoogleNet	Acc = 0.99 max by using VGGNet.	2020
Centralized	EEG	[15]	CNN	Acc train = 0.99 and acc valid = 0.84.	2019
Centralized	EEG	[16]	Caps-Net	Acc = 0.87	2019
Centralized	MRI	[17]	CNN	Acc = 0.91 and rec = 0.88, 0.81, 0.99 for the detection of Meningioma, glioma, and pituitary tumor respectively.	2016
Centralized	MRI	[18]	SVM	Acc = 1.0 using RBF and polynomial kernel.	2016

Literature Review Cont'd

Summary of the literature review

- Centralized approaches perform better for the detection and classification of both the diseases.
- Conducted Research based on privacy preserving federated learning is not well enough for the detection and classification of Alzheimer's and Brain tumor.

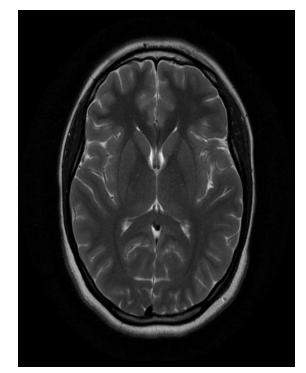
Literature Review Cont'd

Research Gaps

- Centralized approaches aggregate all the training data dynamics in a place that's indicates it is unable to provide data confidentiality.
- Privacy preserving disease detection and classification is needed.
- Empirical analysis of privacy-preserving federated learning in Alzheimer's and Brain tumor classification.
- Performance improvement by considering numerous metrics for federated settings.

Introduction Cont'd

Magnetic Resonance Imaging



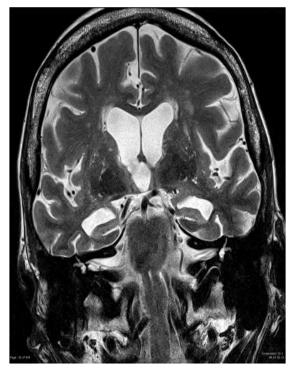


Figure-1.7: Healthy MRI Figure-1.8: Glioblastoma MRI Figure-1.7: Alzheimer's MRI

Image Courtesy: Google

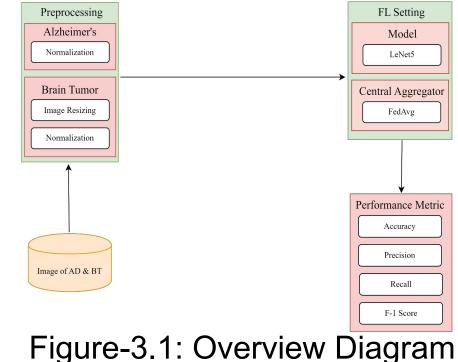
Analysis Design

Aim and Objectives

- Federated learning based Alzheimer's and Brain tumor classification.
- Identify the participation of client's needed to achieve a better performance.

Analysis Design

- Cross-silo federated learning.
- Central aggregator FedAvg algorithm.
- LeNet5 as a classification model.
- Performance evaluation.



Analysis Design Cont'd

Dataset Description

• Alzheimer's Dataset: Binary classification.

Туре	Total	Trainset	Testset
Alzheimer's Disease	3200	2560	640
Healthy Control	3200	2560	640

• Brain Tumor: Multi-class classification.

Туре	Total	Trainset	Testset
Glioma	1621	1297	324
Meningioma	1645	1316	329
Pituitary	1757	1406	351
Healthy Control	2000	1600	400

Analysis Design Cont'd

Dataset Preprocessing

- Resizing.
- Normalization.

Results and Discussions

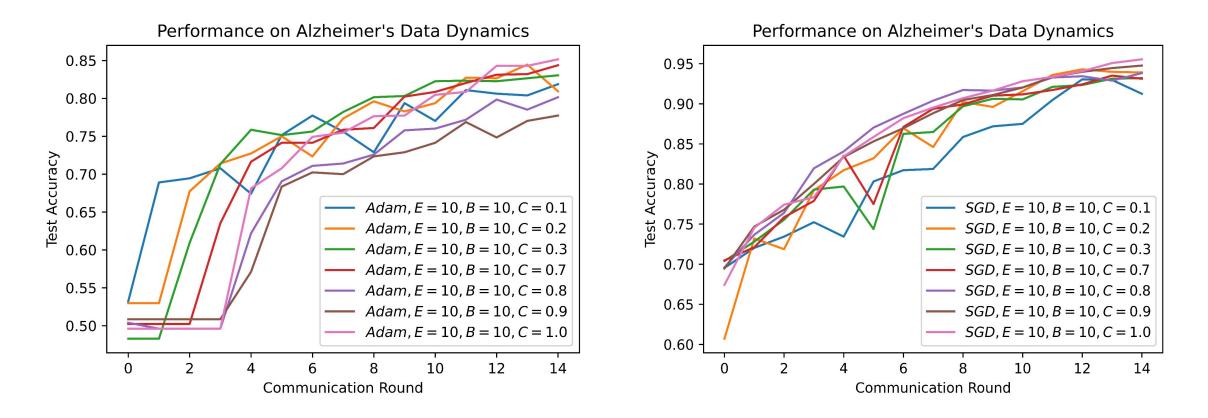
Findings of Alzheimer's Disease Classification

Client	Optimizer	Train Accuracy	Test Accuracy	Precision	Recall	F1 Score
0.1	Adam	77.12%	82.19%	82%	82%	82%
0.2	Adam	79.81%	82.42%	83%	82%	82%
0.3	Adam	82.88%	83.36%	84%	83%	83%
0.7	Adam	89.81%	80.69%	85%	85%	85%
0.8	Adam	81.73%	80.94%	81%	81%	81%
0.9	Adam	78.46%	77.79%	78%	77%	77%
1.0	Adam	86.15%	85%	85%	85%	85%

Findings of Alzheimer's Disease Classification

Client	Optimizer	Train Accuracy	Test Accuracy	Precision	Recall	F1 Score
0.1	SGD	91.35%	90.94%	91.0%	91.0%	91.0%
0.2	SGD	95.0%	93.67%	94.0%	94.0%	94.0%
0.3	SGD	96.15%	93.52%	94.0%	94.0%	94.0%
0.7	SGD	88.08%	92.73%	93.0%	93.0%	93.0%
0.8	SGD	91.73%	93.98%	94.0%	94.0%	94.0%
0.9	SGD	95.96%	95.23%	95.0%	95.0%	95.0%
1.0	SGD	96.16%	95%	95%	95%	95%

Visualization of Alzheimer's Disease Findings



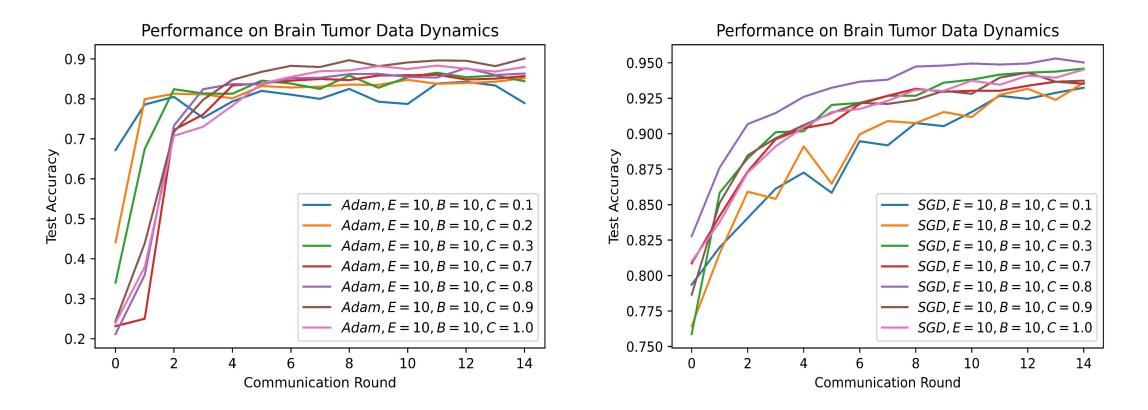
Findings of Brain Tumor Classification

Client	Optimizer	Train Accuracy	Test Accuracy	Precision	Recall	F1 Score
0.1	Adam	69.47%	79.15%	79%	79%	78%
0.2	Adam	89.30%	84.27%	84%	84%	84%
0.3	Adam	85.79%	84.34%	85%	84%	84%
0.7	Adam	88.42%	85.62%	86%	86%	86%
0.8	Adam	87.72%	85.91%	86%	86%	86%
0.9	Adam	90.18%	89.68%	90%	90%	90%
1.0	Adam	87.89%	87.97%	88%	88%	88%

Findings of Brain Tumor Classification

Client	Optimizer	Train Accuracy	Test Accuracy	Precision	Recall	F1 Score
0.1	SGD	91.93%	92.95%	93.0%	93.0%	93.0%
0.2	SGD	94.56%	93.67%	94.0%	94.0%	94.0%
0.3	SGD	91.93%	94.52%	95.0%	95.0%	95.0%
0.7	SGD	91.23%	93.45%	93.0%	93.0%	94.0%
0.8	SGD	96.67%	94.66%	95.0%	95.0%	95.0%
0.9	SGD	87.71%	94.38%	94.0%	94.0%	94.0%
1.0	SGD	88.42%	94.38%	95%	95%	95%

Visualization of Brain Tumor Findings



Performance comparison for Alzheimer's Disease classification

Туре	Data	Ref.	Model	Performance	Year
Federated	MRI	[3]	CNN	Acc = 0.86, pre = 0.81, rec = 0.81, and f1=0.81	2022
Federated	MRI	[4]	CNN	Acc = 0.92, rec = 1.0, spec = 0.91	2021
Our Prop.	MRI	-	LeNet5	Acc = 0.95, pre = 0.95, rec = 0.95, f1 = 0.95	2022
Centralized	EEG	[5]	SVM, LR, KNN, DT	Sen = 0.99, spec = 1.0, f1 = 0.98 using 10-fold CV	2022
Centralized	EEG	[6]	ELM, SVM, KNN	Acc = 0.99, pre = 1.0, rec = 0.98, and f1 = 0.99 using ELM.	2020
Centralized	EEG	[7]	SVM, LR	Acc = 0.88, rec = 0.85, spe = 95	2019
Centralized	MRI	[8]	CNN	Acc = 1.0 for fMRI, and acc = 0.99 for MRI.	2016
Centralized	MRI	[9]	SVM	Acc = 0.88, sen = 0.9, spe = 0.87, and AUC = .89	2016
Centralized	EEG	[10]	SVM	Acc = 0.84 for EO, 0.97 for CT, and 0.72 for EC.	2014
Centralized	EEG	[11]	SVM	Acc = 0.84, rec = 0.75, and spe = 0.94	2013

Performance comparison for Brain tumor classification

Туре	Data	Ref.	Model	Performance	Year
Federated	MRI	[12]	CNN	Acc = 0.95, pre = 0.97, rec = 0.96, and f1=0.94	2022
Our Prop.	MRI	-	LeNet5	Acc = 0.95, pre = 0.95, rec = 0.95, f1 = 0.95	2022
Centralized	MRI	[13]	UNet, Markov M.	Acc train = 0.91, acc test = 0.92 using U-Net.	2020
Centralized	EEG	[14]	VGGNet, AlexNet, GoogleNet	Acc = 0.99 max by using VGGNet.	2020
Centralized	EEG	[15]	CNN	Acc train = 0.99 and acc valid = 0.84.	2019
Centralized	EEG	[16]	Caps-Net	Acc = 0.87	2019
Centralized	MRI	[17]	CNN	Acc = 0.91 and rec = 0.88, 0.81, 0.99 for the detection of Meningioma, glioma, and pituitary tumor respectively.	2016
Centralized	MRI	[18]	SVM	Acc = 1.0 using RBF and polynomial kernel.	2016

Conclusion and Future Work

Conclusion

The key points to conclude is listed below:

- Better detection and classification performance.
- Percentage of client participation prediction to get optimal result is very hard.

Conclusion and Future Work Cont'd

Future Works

The following are considered for future advancement:

- Privacy-preserving communication of model parameters.
- Communication round minimization.

References

- 1. Alzheimer's Association, 2019. 2019 Alzheimer's disease facts and figures. *Alzheimer's & dementia*, *15*(3), pp.321-387.
- 2. Blennow, K., de Leon, M.J. and Zetterberg, H., 2006. Alzheimer's disease. *The Lancet*, *368*(9533), pp.387-403.
- 3. Stripelis, D., Gupta, U., Saleem, H., Dhinagar, N., Ghai, T., Sanchez, R., Anastasiou, C., Asghar, A., Steeg, G.V., Ravi, S. and Naveed, M., 2022. Secure Federated Learning for Neuroimaging. *arXiv preprint arXiv:2205.05249*.
- 4. Huang, Y.L., Yang, H.C. and Lee, C.C., 2021, November. Federated Learning via Conditional Mutual Learning for Alzheimer's Disease Classification on T1w MRI. In *2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)* (pp. 2427-2432). IEEE.
- 5. Movahed, R.A. and Rezaeian, M., 2022. Automatic Diagnosis of Mild Cognitive Impairment Based on Spectral, Functional Connectivity, and Nonlinear EEG-Based Features. *Computational and Mathematical Methods in Medicine*, 2022.
- 6. Siuly, S., Alçin, Ö.F., Kabir, E., Şengür, A., Wang, H., Zhang, Y. and Whittaker, F., 2020. A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, *28*(9), pp.1966-1976.
- Durongbhan, P., Zhao, Y., Chen, L., Zis, P., De Marco, M., Unwin, Z.C., Venneri, A., He, X., Li, S., Zhao, Y. and Blackburn, D.J., 2019. A dementia classification framework using frequency and time-frequency features based on EEG signals. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 27(5), pp.826-835.
- 8. Lee, B., Lee, T., Jeon, H., Lee, S., Kim, K., Cho, W., Hwang, J., Chae, Y.W., Jung, J.M., Kang, H.J. and Kim, N.H., 2022. Synergy through integration of wearable EEG and virtual reality for mild cognitive impairment and mild dementia screening. *IEEE Journal of Biomedical and Health Informatics*, *26*(7), pp.2909-2919.
- 9. Talo, M., Yildirim, O., Baloglu, U.B., Aydin, G. and Acharya, U.R., 2019. Convolutional neural networks for multi-class brain disease detection using MRI images. *Computerized Medical Imaging and Graphics*, 78, p.101673.
- 10. Plant, C., Teipel, S.J., Oswald, A., Böhm, C., Meindl, T., Mourao-Miranda, J., Bokde, A.W., Hampel, H. and Ewers, M., 2010. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease. *Neuroimage*, *50*(1), pp.162-174.
- 11. McBride, J.C., Zhao, X., Munro, N.B., Smith, C.D., Jicha, G.A., Hively, L., Broster, L.S., Schmitt, F.A., Kryscio, R.J. and Jiang, Y., 2014. Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer's disease. *Computer methods and programs in biomedicine*, *114*(2), pp.153-163.

References Cont'd

12. Mahlool, D.H. and Abed, M.H., 2022. Distributed brain tumor diagnosis using a federated learning environment. *Bulletin of Electrical Engineering and Informatics*, *11*(6), pp.3313-3321.

13. Tairi, H., 2020, June. Segmentation of medical images for the extraction of brain tumors: A comparative study between the Hidden Markov and Deep Learning approaches. In *2020 International Conference on Intelligent Systems and Computer Vision (ISCV)* (pp. 1-5). IEEE.

14. Rehman, A., Naz, S., Razzak, M.I., Akram, F. and Imran, M., 2020. A deep learning-based framework for automatic brain tumors classification using transfer learning. *Circuits, Systems, and Signal Processing*, *39*, pp.757-775.

15. Abiwinanda, N., Hanif, M., Hesaputra, S.T., Handayani, A. and Mengko, T.R., 2019. Brain tumor classification using convolutional neural network. In *World Congress on Medical Physics and Biomedical Engineering 2018: June 3-8, 2018, Prague, Czech Republic (Vol. 1)* (pp. 183-189). Springer Singapore.

16. Afshar, P., Mohammadi, A. and Plataniotis, K.N., 2018, October. Brain tumor type classification via capsule networks. In *2018 25th IEEE international conference on image processing (ICIP)* (pp. 3129-3133). IEEE.

17. Milletari, F., Ahmadi, S.A., Kroll, C., Plate, A., Rozanski, V., Maiostre, J., Levin, J., Dietrich, O., Ertl-Wagner, B., Bötzel, K. and Navab, N., 2017. Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound. *Computer Vision and Image Understanding*, *164*, pp.92-102.

18. Hebli, A. and Gupta, S., 2017, December. Brain tumor prediction and classification using support vector machine. In 2017 *international conference on advances in computing, communication and control (ICAC3)* (pp. 1-6). IEEE.

Thank you Warmly welcome any questions